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Abstract: This study is concerned with the natural action (as Mdobius transformations) of some subgroups of
PGL,(Z) On the elements of quadratic number field over the rational numbers. We start with two groups- the full

modular group G = PSL,(Z) and another group of Mdobius transformations 37 = <x, yixt=yt= 1>. We consider

different sets of numbers with fixed discriminants in the quadratic field and look at structure of the orbits orbits of
the actions of G, , GnM and their subgroups on these sets. The results of earlier studies on the number of orbits

and the properties of elements belonging to them are extended by similar results related to the new twist connected
to the group M which has nontrivial intersection with G and opens a possibility to look at orbits which were not

computed in earlier studies.
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INTRODUCTION

A non-empty set Q with an action of the group G
on it, is said to be a G set. We say that Q is a transitive
G-set if, for any p,q in Q there exists a g in G such that

Since every element of

ré=q-
QWm)\Q=1{r + wim:1,0=weQ} can 1223be expressed

uniquely as a+n , where n=k*m, K is any positive
c
2

integer and _a-n

ab and c are relatively prime

c
integers and we denote it by ¢/(a,b,c). Then:

a++n az—n

ra,c,b=
c c

Q' (Wn)={ € Zand (a,b,c) =1}
is a proper G-subset of Q(J/m)u{w} and since
Q' (Wn)nQ ' (Wn')=¢ for distinct p,n non-square
integers so Q(«/m)\Q is the disjoint union of Q*(\k*m)
for all keN. Thus it reduces the study of action on
Q(Wm)/0 to the study of action on Q*(/n). If
a(a,b,c)eQ (v/n) and its conjugate ¢ have opposite
signs then ¢ is called an ambiguous number (Mushtaq,

1988). The actual number of ambiguous numbers in
Q' (+/n) has been discussed by Husnine et al. (2005)

as a function of n. The classification of the elements of

Q' (v/n) in the form [4,5,¢] modulo p has been given by
Farkhanda et al. (2012).

This study is concerned with the natural action (as
Mobius transformations) of some subgroups of
PGL,(Z) on the elements of quadratic number field
over the rational numbers. That is it investigate the
study of action on projective line over rationals with

emphases on irrationals of the form a+yn  with
C

(a,az_",c)=1' We start with two groups-the full

modular group G = (x',y": x' *= ' *=1) where ., -1
zZ

and V()= -1 and another group of Mdbius
z+1
transformations ;s — <x,y:x2 =)0 = 1> s x(2) _—-l and
3z
yz)= -1 (Sahin and Bizim, 2003). We consider

3(z+1)
different sets of numbers with fixed discriminants in the
quadratic field and look at different orbits of the action
of G, M, GnM and their subgroups on these sets. The
results of earlier studies (Aslam et al., 2003-04, 2012;
Aslam and Zafar, 2011) on the numbers of orbits and
the properties of elements belonging to them are
extended by similar results related to the new twist
connected to the group M which has nontrivial
intersection with G and opens a possibility to look at
orbits which were not computed in earlier studies.
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Table 1: The action of elements of G on ¢ € Q* (v/n)

a++n
a =
C a b c
, -1 -a c b
x(a)—7
y'(a')—a_l -a+b 2a+b+c c
N2 _ -a+tc c 2a+b+c
0@ === o b
o _ a- 2a+b+c
x,y,(“) T Ta+1
yx(@)=a+1 a+tc 2a+b+c c
a+b b 2a+b+tc

0)x(@ = ——=

Since xy=y%' and yx=(x)')’ so one of the
interesting subgroups of GAM is s = (xy, x) - We
determine, for each non-square n, the all M’-subsets of
Q" (v/n) by using classes [4,b, c](mod n) and we prove
that for each M subset A of
Q™'n) = {a(a,b,c) e Q' (Wn):3| ¢} OF Q'(Wm\Q™(Wn)
, AUX'(A) is a G-subset of 0" (/). We also prove that
for each M subset A of Q™" (J/n)» AU x(4) is an M-
Q“(Wn) according as
n#0(mod 9) or n=0(mod 9) similarly if A is an

subset of ™ (Jn) oOr

Table 2: The action of elements of M on g (q,b,c) € Q" (vn)

M subset of Q (Wn)\Q™ (Wn) then 4U x(4) is an M-
subset of Q"(\9n)=(Q' (Wm\ Q" Wn)uwQ ™ (on) for

each non-square n. Thus M -subsets (resp. M -orbits)
help us in determining the M-subsets and G-subsets
(resp. M-orbits and G-orbits) of Q(v/m)\Q-

PRELIMINARIES

We quote from Andrew and John (1995), Aslam
et al. (2003-2004, 2005), Aslam and Zafar (2011) and
Afzal et al. (2012) the following results for later
reference. Also We tabulate the actions on

a(a,b,c)e Q" (\/n) of x',y" and x, y the generators of
G and H respectively, in Table 1 and 2.

Theorem 1:

e If (a,p)=1, then x* = g(mod p*) has no solutions
if x* =a(mod p) is not solvable and exactly two
solution if x* = a(mod p) is solvable.

e Suppose a is an odd integer. Then x* = a(mod 2"),

with k>3, is solvable if and only if

a++n
a=— a b c
1 _a ¢ 3b
x(a)—a1 3
_ a-c 3Q2a+b+c
Y@ =313 3 ( )
yz(a)=_(a)+1 -5a-3b-2c 2a+b+c 12a +9b + 4c
3a+2
Y@ = —(Ba+2) -7a - 6b - 2¢ 12a +9b + 4c 3(4a+4b+c)
(6a +3) 3
y4(a)=—(2a+1) -5a-6b-c 4a+4b+c 6a+9b+c
3a+1
¥5(@) = —Ba+1) -a-3b 6a+9b+c 3b
3a 3
xy(@) =a+1 a+c 2a+b+c c
xyz(a)=3a+2 Sa +3b+ 2c 12a + 9b + 4c 3(2a+b+c)
3a+3 3
xy3(a')=2a+1 7a + 6b + 2c 4a+4b+c 12a +9b + 4c
3a+2
xy4(a)=3a+1 S5a+6b+c 6a+9b +c 3(4a+4b +c)
6a + 3 3
s o« a+3b b 6a+9b+c
xy (a)_3a+1
_ a a-3b b —6a+9b+c
yx(a)—_3a+1
Yox(a) =—3a+1 Sa-6b-c —6a+9b+c 3(—4a+4b+c¢)
6a —3 3
V(@) = —2a+1 7a - 6b - 2¢ —4a+4b+c —12a+9b + 4c
3a—2
y4x(a)=_3a+2 Sa-3b-2c —12a + 9b + 4c 3(—2a+b+c)
6a+3 3
yx(@)=a—1 Sa-3b-2c —2a+b+c c
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a =1(mod 8) , in which case there are exactly four

solutions. In particular, if S is any solution, then
all of the solutions are given by +s and +s + 257,
Fork=3,x=1,3,5, 7 (mod 2°) are exactly four
solutions (Andrew and John, 1995).

Theorem 2: Q'”(\/;):{%:a cQ ()t =13} is

invariant under the action of M (Aslam et al., 2003-
2004).

Theorem 3: For each » = 1,346 or 7(mod 9) .
Q™" Vn)={a(a,b,c)e Q" (\Jn):3|c} is an M -subset of
Q" (/n) (Aslam et al., 2003-2004).

Theorem 4: Let pn=0(mod3). Then the sets
A ={aeQ Wn):c=1(mod3)yand 4L ={aeQ (Wn)
¢ = 2(mod 3)} are two M -subsets of
Q' (Wn)\Q™ (n) depending upon classes [a, b, c]
modulo 3 (Afzal et al., 2012).

Theorem 5: Let 5 =0(mod 3). Then the sets

B ={aeQ"(\n):b=1(mod3);and B} ={aeQ™ (n)
.b_2(mod 3)} are two M -subsets of Q™ (n)

depending upon classes [a, b, ¢] modulo 3 (Afzal ef al.,
2012).

Theorem 6: If ;=0o0r 3(mod 4), then
S={ae Q*(\/;) sborc=1(mod4)} and _g= {aeQ (n)
:borc=-1(mod 4)} are exactly two disjoint G-subsets
of @*(/n) depending upon classes [a, b, c] modulo 4
(Aslam et al., 2005).

Theorem 7: If 5 =1(mod 4), then Q'/n)=
{a e Q" (\n):2|(b,e)} and Q" (/n)\Q ' (+/n)
={aeQ(n):2 (bc) are both G-subsets of Q*(/n)
(Aslam et al., 2005).

Theorem 8: Let p be an odd prime factor of n. Then
both of 57 ={aeQ (n):(blp)or(clp)=1} and
S? ={a e Q' (\n): (blp)or (clp)=-1} are G-subsets of
Q' (v/n)- In particular, these are the only G-subsets of
Q" (+/n) depending upon classes [a, b, c] modulo p
(Aslam and Zafar, 2011).

ACTION OF PSL, (Z)N(x, y: X’ =y*=1) ON Q' (/n)

Recall that g = <x"y';x' 2=yt 3= 1>, M=

1>, where , -1 a-1

(roy o=yt = Y@= =2
o o

-1 and (@)=
3a 3(a+1)
of Q(+/m)\Q is invariant under the action of modular

. The proper subset Q" (+/n)

x(a)=

group G but Q*(4/») is not invariant under the action of
Mobius group M. Thus it motivates us to establish a
connection between the elements of the groups G and
M  and hence to deduce a common subgroup
M = < XV, yx> of both groups under the action of which
both Q™ (Vn) and Q'(n)\Q™(n) are invariant.
Which helps us in finding the G-subsets of Q" (v/n)
M-subsets of Q™ (Wn),

Q" (n)=(Q" (\/7)\Q (\f))uQ accordmg

as  n# 0(mod 9) or  n=0(mod 9) and
Q" (Wn)=(Q (WVm)\ Q™ (Wn) LQ™ (+9n) for all non-

square 7. The following Lemma shows the relationships
between the elements of G and M (Table 1 and 2).

Lemma 1: Let x' ;' and X, y be the generators of G

and M respectively defined above (Afzal et al., 2012).
Then we have:

o =) YD) and
»? é(x'(y')z)(x'y')(x'(y'ﬁ(x')
o V' EIEY) (YT and

y —1(x DY) ()

o W=V gpq =)
S CLIN (DD s
° an
Xy = ((y’)2x')(y56’)(y’ZX')

120

xy* —*(yx) ("x')?

* and
X’ =((y)’x)’

« T and
¥'=(3x)(3y)(3x)

" 1

Xy =305

* 3 and
x'(y)*=y°x. In particular (X'y’)=3(yx)1 and

3

*ON)=yx

The following corollary is an immediate

consequence of Lemma 1.
Corollary 1:

e By Lemma 1, since xy=yx' and yx=(x)')* so
M = (xy,yx) 1s a common subgroup of G and M
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where xy,yx are the transformations defined by

(@) =a+tand @ .
1-3a
e Asyxxy =y, XyyX = Xy’X, SO <yz,xy2x> is a proper
subgroup of M.
e (M*,x)=(M*y)=M and (M*,x') =(M*y') =
G+

We now see the action of this subgroup M~ on
Q" (v/n) Where n has an odd prime factor.

Theorem 9: Let p =3 be an odd prime factor of n.
Then S/ ={aeQ"(v/n):(b/p)or (c/p)=1} and
S ={aeQ (Vn):(blp)or (c/p)=—1} are two M -subsets
of 0*(«/n)- In particular, these are the only M -subsets
of q*(/n) depending upon classes [a, b, c] modulo p.
Before proving this theorem and running through a
few quick consequences, we quote here two Lemmas 2

and 3 from Malik and Asim (2012). These results give
us the classification of the elements of Q*(:/n) in the

form of classes [a, b, ¢] modulo p.

Lemma 2: Let P be prime and n = 0(mod p). Then E,’
consists of classes [0, 0, qr], [0, 0, gnr], [0, gr, 0], [O,
qnr, 0], [qr, qr, qr], [qnr, gr, qr], [qr, qor, qnr] or [qnr,
qnr, qnr].

Lemma 3: Let (n/p) =1 and let [a,b,c](mod p) be the
class of ¢ (a,b,c) of 9" (\n)- Then:

e Ifp=1 (mod 4) then [a, b, ¢] (mod p) has the
forms L0 qr,qr]’ [0, gnr ,qnr ] [qr.0, qr]
lgr0,gnr]  [ar.qr01  [arqnr 01 [qnr 0,91
[gnr.,0,qnr] [gnr,qr,0] [gqnr,qnr,0] [gnr ,0,0]
oro[qr,0, Oj only. ’ ’

e Ifp =23 (mod 4) then [a, b, c] (mod p) has the
forms L0 qnr.qr] [0, gr qnr ] [qr.0,qr]
[gr.qr.0] [qr,0,qnr] [qr,qnr,0] [gnr,0,qr]
[an,qr,O],’ [gnr,0, an]’, [an,an,O]: [gnr,0,0] 0;
[g7.0.0] only.

Proof of theorem 9: Let [a,b,c](mod p) be the class

of a(a,b,c)eQ’(\/n). In view of Lemma 2, either

both of b, ¢ are qrs or qnrs and the two equations
xy(a(a,b,c))=a (a+c,2a+b+c,c), yx(a(a,b,c))
=a'(a-3b,b,—6a+9b+c) fix b, ¢ modulo p. If
a=b=0(mod p) then (2a+b+c)p)=1 or

(Qa+b+c)p)=-1 (c/lp)=1 or
(c/p) =—1. similarly for g = ¢ =0(mod p) . This shows
that the sets S;” and S, are M -subsets of Q ()

depending upon classes modulop . m
The following corollary is an
consequence of Theorem 1.

according as

immediate

Corollary 2: Let p=3 be an odd prime such that
n=0(mod 2p). Then Q'(/n) is the disjoint union of

S\"and S,” depending upon classes modulo 2p .

Proof: Since a’-n=bc implies  that
a* =bc(mod 2p). This is equivalent to congruences
a® = be(mod p) and a’ =bc(mod 2). As 1 is the
quadratic residue of every prime and second

congruence forces that b, or ¢ is 1. Hence by Theorem
1,S,%, S,” are M -subsets of Q" (/). ®

Remark 1: For an odd prime p =3, Q™ (Jn)=@ if
and only if n= O(mod Zp) .

Corollary 3: Let p = 3 be an odd prime and
n=0(mod 6). Then Q" (/n)\Q™ (v/n) is the disjoint
union of S, and S,”. Furthermore q™(J/s) is the
disjoint union of B* = {a,b,c) e Q" (+/n): (blp) =1} and
Bf ={a(a,b,c) Q" (n): (blp)=—1} depending upon
classes modulo 6.

Proof: Let g(a,b,c) eQ*(\/Z) and suppose ¢ % 0(mod 3) -
The two equations xy(a(a,b,c))=a' (a+c,2a+b+c,c)
and yx(a(a,b,c)) = ' (a—3b,b,—6a+9b+c) fixb, cin
modulo 3. So a(a,b,c) belongs to S, or in S,
according as (¢/3) =1 Or (¢/3) =—1. Similarly B,® and
M'-subsets of Q" (/n) -
Q" (Wn)=B/UB.

The next theorem is more interesting in a sense*that
whenever (n/p)=+1, p#3, Q (Jn) is itself an M -set

B/ are Hence

depending upon classes [a, b, ¢] modulo p.

Theorem 10: Let p=3 be an odd prime and
(n/p) =+1. Then Q" (J/n) is itself an M"-set depending
upon classes [a, b, c] modulo p.

Proof: Follows from Lemma 3 and the equations

xy(a)=a+1 and o givenin Table 2. m
-3a+1

Let us illustrate the above theorem in view of Lemma 3.

If (n/5) = 1, then the set:

yx(@) =

1919
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{[0,1,4], [4,0,4], [3.2.4], [2,2,4], [1,0,4] »
[1,0,3],[4,0,3],[2,1,3],[0,3,3], [3.1,3] >

[1,3,0], [1,0,0], [1,2,0], [1,4,0], [1,1,0], [4.,4,0] »

[4,2,0], [4,0,0] ,[4,3,0][4,1,0], [4,0,1], [0,4,1] »

[1,0,11, [2,3,1], [3,3,1], [3,4,2], [0,2,2], [2,4,2], [4,0,2] »
[1,0,2]} isan M’ set. That is, 0" (/n) is itself an M-

set depending upon classes [a, b, c] modulo 5. Similarly
for (n/5) = —1. The next two theorems discuss the cases

n= p(mod 2p) and (n/2 p)=+1.

Theorem 11: Let p#3 be an odd prime and
n= p(mod 2p). Then 9'(Yn)\Qn) is the disjoint
and S,". Furthermore q'( /) is the
disjoint union of ¢/ = {a(a,b,c) e Q (Vn): (blp) or (clp) =1}
and C? ={a(a,b,c)e Q'(\/;) :(b/p)or (c/p) = -1}

depending upon classes modulo 2p .

union of S/’

Proof: Let g(a,b,c)eQ’(vn). we show that
xy(a(a,b,c)) and yx(a(a,b,c)) are belong to S,
according as (b/p) or (c¢/p) =1. Similarly xy(a(a,b,c))
and yx(a(a,b,c)) are belong to S,” according as (c/p)
or (b/p) = -1. As xy(a(a,b,c))=a'(a+c,2a+b+c,c)
and (a+c)’-QRa+b+c)c=n, so we have the
congruence (a +c)’ - 2a+b+c)c= p(mod 2p)
which is  equivalent to the  congruences
(a+c)>—Qa+b+c)c= p(mod 2) and
(a+c)’ =Qa+b+c)c(mod p). First congruence is
trivially true so we discuss the second congruence only.
Let (a/p)=0 then ((2Qa+b+c)p)=+1 or
(Qa+b+c)p)=0 according as (¢/p)=0 or
(c/p)==*1. Let (a/p) = =1 then ((2a+b+c)lp)=(clp)=1
Or ((2a+b+c)p)=(clp)=-1 because ((a+c)*/p)=1.
Now  yx(a(a,b,c))=a'(a—3b,b,—6a+9b+c) and
(a—3b)> —b(~6a +9b +c)=n. With similar arguments
we can show that yx(a(a,b,c)) belongs to S,” or S,”.
Hence the sets S,” and S,” are M -subsets of Q"(+/n)

depending upon classes modulo 2p. Similarly it is easy
to see that C,”> and C,° are M"-subsets. m

Theorem 12: Let p#3 be an odd prime and

(n/2p)==+1. Then Q'(+/n) and Q'(vn)\Q'(Wn) are two
M’-subsets of 0" (/) -

Proof: Follows from Theorem 6 and 7. m
The following result is a generalization of Theorem 1.

Theorem 13: Let p#3 be an odd prime and
n=0(mod p"). Then S” and S’ are exactly two M'-
subsets of Q* (/) depending upon the classes [a, b, c]
modulo p".

Proof: Let P be an odd prime such that 5 = 0(mod p")

and [a,b,c](mod p") be the class of a(a,b,c) e Q" (Wn)-
Then:

a* =bc(mod p") (1)
implies
a’ = bc(mod p) @)

By Theorem 9, the congruence: (1) has exactly two
solutions (i.e., two values of a) if (2) is solvable. So it is
enough to see the class [a,b,c](mod p”) in modulo p.

Thus by Theorem 9 we get the required result. m
The following lemma is a particular case of the
above theorem.

Lemma 4: Let =1 and 5 = 0(mod 3"). Then
S} ={aeQ Wm\Q (n): (blp)or (clp) = 1}
$3={aeQ (Wm\Q™ (n): (bip)or (clp) = -1}
are M’-subsets of Q' (Wn)- Moreover
B ={aeQ"(\n):(b3)=1}, B ={acQ” \n):(®/3)=-1}
are M -subsets of Q" (/). In particular, these are the
only M -subsets of Q' (v/n) depending upon classes [a,
b, ¢] modulo 3.

Proof: Follows from Theorems 4, 5 and 13.
Next theorem discuss the G and M-subsets with the
help of M -subsets.

Theorem 14:

e If A is an M-subset of Q™(Jn) oOr
Q" (Wn)\Q™ (Wn), then 4Ux'(4) is A G-subset of
Q (V).

o If A is an M -subset of Q™ (4/n), then 4 U x(4)
is an M-subset of Q™" (y/n) or 0*(+/n) according
as n#0(mod9) or n=0(mod 9) .

e If A is an M -subset of 0" (Wn)\Q™(n), then
AU x(A) is an M-subset of 0" (\/9) for all non-
square n.

1920
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Proof:
e Follows by the equation:
X(Q™ (W) =0 (m\ Q™ (n)

e Follows by the equations x(0™ (v/n))= 0™ () or:

XQ (W)= Q*[\@ \ Q***[ ;J

according as n # 0(mod 9) or n=0(mod 9).
e Follows by the equation:

Ao (N Q (W)= Q7 (Von) m

The following example describes the above theorem.
Example: Let n=27. Then:

a:1+127 eQ*(\/E)

but

a_1+\/5_3+

243 c Q***(\/%)

3 3 9

Also

ﬂ:3+127 EQ*(\/E)
but

3

s ”1‘6 0 W3 0™ 03

Similarly

3+\/277 c Q***(,\/E)

18

y=

whereas

7 9N o

3 162

The next three theorems are the generalization of
Theorem 9 to the case when n involves two distinct
prime factors.

1921

Theorem 15: Let p, #3 and p, #3 be distinct odd
Thens, =S5 nS/2,
S =8NS, 8, =85 s/ and S,, =8, ns,? are

four M -subsets of Q" (\/n) . More precisely these are

primes  factors of n.

the only M -subsets of 0’ (Jn) depending upon classes
[a, b, c] modulo p;p;.

Proof: Let [a,b,c](mod p,p,) be any class of
a(a,b,c)e Q' (Wn)  with Then
a® —n = bc implies that:

n=0(mod p,p,)-

a® = be(mod Pip>)
3

This is equivalent to congruences a* =bc(mod p,)
and ¢’ =bc(mod p,). By Theorem 9, the
congruence a® =bc(mod p,) gives two M -subsets
S ={a GQ*('\/;)Z(C/p])OI’ (c/p,) =1} and
87" ={a e Q"(n):(elp) or (clp) = -1} of O'(Vn).
As a® = bc(mod p,), again applying Theorem 9 on

each of S;”! and S,”' we have four M -subsets Si1, Si2,
SZ,I and Sz’z of Q*(\/;) .

Theorem 16: Let p=3 be any odd prime and
n=0(mod3p). Then 4 =8/"4’s 4,=5S' N4,
A4,=S!n4 and 4, =S~ 4> are four M -subsets

of Q'(Wn)\Q™/n) depending upon classes [a, b, c]
modulo 3p .

Proof: Follows from Theorems 4 and 15. m

Theorem 17: Let p=3 be any odd prime and
n=0(mod 3p). Then B =S/~B', B,,=SI/NB;,
B,=S"nB; and B, =S/ B’ are four M’-subsets of

Q™" (v/n) depending upon classes [a, b, ¢] modulo 3p.

Proof: Follows from Theorems 4 and 15. m

We now state the concluding theorem of this study.
Theorem 18: Let n=3Fpiip2...p"
P> Py»es p, ar€ distinct odd primes. Then the number

of M -subsets of Q" (v/n) is 2 namely 4 if

léil,iz,i3,..,,ir32
k=0. Moreover if k>1, then each M -subset X of
these M’-subsets further splits into two proper M -
subsets {a € X :bor c =1(mod 3)} and

where
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{a € X :bor c=—1(mod 3)}. Thus the number of M*-
subsets of Q*(y/n) depending upon classes [a, b, c]
modulonis 2" if k> 1.

Proof: Let k=0. Then, by Theorem 13 and 15,
Q' («/n) is the disjoint union of 2" subsets §

lgil”Z”’}""”’rSz
which are invariant under the action of M". However if
k >1 then by Theorems 16 and 17 we know that each
of these M -subsets splits into four M -subsets
o <2 M A13 > S i, <2 M Az3 > S M Bﬁ

1<) iy iy 16y iy i o 1) iy sig sl <2

and § R mBs’ . Thus by lemma 4, Q*(\/;) is

léil,iz,i3,,,,,iyﬁ
the disjoint union of 2"** subsets of Q" (+/») which are
invariant under the action of M. More precisely these
are the only M-subsets of Q*(\/;) depending upon
classes [a, b, ¢c] modulo n. Hence the result. m
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